

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

Wenhai Wang¹, Enze Xie², Xiang Li³, Deng-Ping Fan⁴, Kaitao Song³, Ding Liang⁵, Tong Lu¹, Ping Luo², Ling Shao⁴ ¹Nanjing University ²The University of Hong Kong ³Nanjing University of Science and Technology ⁴IIAI ⁵SenseTime Research wangwenhai362@smail.nju.edu.cn

Vision Transformer (ViT)

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." in ICLR, 2020.

JFT-300M

300 M

90

[%]

Pyramid Vision Transformer (PVT)

(a) CNNs: VGG [41], ResNet [15], etc.

CNN's Limitations

Local Receptive FieldFixed Weights

(b) Vision Transformer [10]

ViT's Limitations

- Columnar Structure
- Low-Resolution OutputUnsuitable for Det/Seg

(c) Pyramid Vision Transformer (ours)

PVT (ours)

- A Transformer backbone as versatile as CNN

Wang, Wenhai, et al. "Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions." arXiv preprint arXiv:2102.12122 (2021).

Overall Architecture

- Key Points
- Four Stages
- Each Stage:(1) Patch Emb.(2) Transformer Enc.
- Spatial-Reduction Attention (SRA) for high-resolution input

How PVT obtains the feature pyramid?

• Adjusting the patch size (P_i) in Stage i

The process of the patch embedding in Stage i

Compared to original multi-head attention, the complexity of SRA is R_i² times lower!

Detailed settings:

- P_i : the patch size of the stage *i*;
- C_i: the channel number of the output of the stage i;
 L_i: the number of encoder layers in the stage i;
 R_i: the reduction ratio of the SRA in the stage i;

- N_i : the head number of the SRA in the stage *i*;
- E_i : the expansion ratio of the feed-forward layer [51] in the stage *i*;

	Output Size	Layer Name	PVT-Tiny	PVT-Small	PVT-Medium	PVT-Large		
	$\frac{H}{4} \times \frac{W}{4}$	Patch Embedding	$P_1 = 4; \ C_1 = 64$					
Stage 1		Transformer Encoder	$\begin{bmatrix} R_1 = 8\\ N_1 = 1\\ E_1 = 8 \end{bmatrix} \times 2$	$\begin{bmatrix} R_1 = 8\\ N_1 = 1\\ E_1 = 8 \end{bmatrix} \times 3$	$\begin{bmatrix} R_1 = 8\\ N_1 = 1\\ E_1 = 8 \end{bmatrix} \times 3$	$\begin{bmatrix} R_1 = 8\\ N_1 = 1\\ E_1 = 8 \end{bmatrix} \times 3$		
Stage 2	$\frac{H}{8} \times \frac{W}{8}$	Patch Embedding	$P_2 = 2; \ C_2 = 128$					
		Transformer Encoder	$\begin{bmatrix} R_2 = 4\\ N_2 = 2\\ E_2 = 8 \end{bmatrix} \times 2$	$\begin{bmatrix} R_2 = 4\\ N_2 = 2\\ E_2 = 8 \end{bmatrix} \times 3$	$\begin{bmatrix} R_2 = 4\\ N_2 = 2\\ E_2 = 8 \end{bmatrix} \times 3$	$\begin{bmatrix} R_2 = 4\\ N_2 = 2\\ E_2 = 8 \end{bmatrix} \times 8$		
Stage 3	$\frac{H}{16} \times \frac{W}{16}$	Patch Embedding	$P_3 = 2; \ C_3 = 320$					
		Transformer Encoder	$\begin{bmatrix} R_3 = 2\\ N_3 = 5\\ E_3 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} R_3 = 2\\ N_3 = 5\\ E_3 = 4 \end{bmatrix} \times 6$	$\begin{bmatrix} R_3 = 2\\ N_3 = 5\\ E_3 = 4 \end{bmatrix} \times 18$	$\begin{bmatrix} R_3 = 2\\ N_3 = 5\\ E_3 = 4 \end{bmatrix} \times 27$		
Stage 4	$\frac{H}{32} \times \frac{W}{32}$	Patch Embedding	$P_4 = 2; \ C_4 = 512$					
		Transformer Encoder	$\begin{bmatrix} R_4 = 1\\ N_4 = 8\\ E_4 = 4 \end{bmatrix} \times 2$	$\begin{bmatrix} R_4 = 1\\ N_4 = 8\\ E_4 = 4 \end{bmatrix} \times 3$	$\begin{bmatrix} R_4 = 1\\ N_4 = 8\\ E_4 = 4 \end{bmatrix} \times 3$	$\begin{bmatrix} R_4 = 1\\ N_4 = 8\\ E_4 = 4 \end{bmatrix} \times 3$		

Table A1: Detailed settings of Pyramid Vision Transformer (PVT) series. The design follows the two rules of ResNet [5]. (1) With the growth of network depth, the hidden dimension gradually increases, and the output resolution progressively shrinks; (2) The major computation resource is concentrated in Stage 3.

- Multi-Scale/High-Resolution Output
- As versatile as CNN, can be apply to detection/segmentation
- Making pure Transformer detection/
 segmentation possible, for example
 (1) PVT + DETR
 (2) PVT + Trans2Seg

- PVT-S vs. R50 AP: 40.4 vs. 36.3 (+4.1)

#Param: 34.2 vs. 37.7

- PVT-L vs. X101-64x4d
AP: 42.6 vs. 41.0 (+1.6)
#Param: 71.1 vs. 95.5 (20% fewer)

Deeper vs. Wider & Pretrained

Method

Wider PVT-Small

Deeper PVT-Small

Table A3: **Deeper vs. Wider.** "Top-1" denotes the top-1 error on the ImageNet validation set. "AP" denotes the bounding box AP on COCO val2017. The deeper model obtains better performance than the wider model under comparable parameter number.

Top-1

19.3

18.8

AP

40.8

41.9

RetinaNet 1x

 AP_{75}

43.3

44.3

 AP_{50}

61.8

63.1

#Param

 (\mathbf{M})

46.8

44.2

Pretrained weights can help PVT converge faster and better.

hw

 \bigvee (hw)×c

 $\frac{1}{R^2} \times c$

- Overlapping Patch Embedding

Multi-Head

Attention

Κ

Q

Average

Pooling

PVTv2: Linear SRA

- Convolutional Feed-Forward
- Linear SRA

Multi-Head

Attention

Κ

Q

Conv

PVTv1: SRA

Improved: Overlapping Patch Embedding

Classification on ImageNet

Method	#Param (M)	GFLOPS	Top-1 Acc (%)
ResNeXt101-64x4d [33]	83.5	15.6	79.6
RegNetY-16G [24]	84.0	16.0	82.9
ViT-Base/16 [7]	86.6	17.6	81.8
DeiT-Base/16 [29]	86.6	17.6	81.8
Swin-B [21]	88.0	15.4	83.3
Twins-SVT-L [4]	99.2	14.8	83.3
PVTv2-B5 (ours)	82.0	11.8	83.8

Detection on COCO

o-1 Acc (%)	Backbone	Method	AP ^b	AP_{50}^b	AP ^b ₇₅	#P (M)	GFLOPS
79.6	ResNet50 [13]	Cascada	46.3	64.3	50.5	82	739
82.9	Swin-T [21]	Mask	50.5	69.3	54.9	86	745
81.8	PVTv2-B2-Li (ours)		50.9	69.5	55.2	80	725
81.8	PVTv2-B2 (ours)		51.1	69.8	55.3	83	788
83.3	ResNet50 [13]		43.5	61.9	47.0	32	205
83.3	3 Swin-T [21]		47.2	66.5	51.3	36	215
83.8	PVTv2-B2-Li (ours)	AISS [37]	48.9	68.1	53.4	30	194
	PVTv2-B2 (ours)		49.9	69.1	54.1	33	258
	ResNet50 [13]		44.5	63.0	48.3	32	208
	Swin-T [21]		47.6	66.8	51.7	36	215
	PVTv2-B2-Li (ours)	GFL [1/]	49.2	68.2	53.7	30	197
	PVTv2-B2 (ours)		50.2	69.4	54.7	33	261
	ResNet50 [13]		44.5	63.4	48.2	106	166
	Swin-T [21]	Sparse	47.9	67.3	52.3	110	172
	PVTv2-B2-Li (ours)	R-CNN [26]	48.9	68.3	53.4	104	151
	PVTv2-B2 (ours)		50.1	69.5	54.9	107	215

- Efficient Attention Layer

Deformable Attention, Linear SRA, ...

- Position Embedding for 2D/3D Images CPVT, Local ViT, ...
- Pure Transformer Vision Models

Segformer, YOLOS,

- Transformer + NAS/Pruning/Distillation/Quantification

Visual Transformer Pruning, Patch Slimming, ...

- Multimodal Transformer (*e.g.,* CV+NLP)

CLIP, Kaleido-BERT, ...

Thanks

Code: <u>https://github.com/whai362/PVT</u>