

#### **Abstract:**

 $\succ$  There exists two challenges which prevent the algorithm into industry applications. On the one hand, most of the state-of-art algorithms require quadrangle bounding box which is in-accurate to locate the texts with arbitrary shape. On the other hand, two text instances which are close to each other may lead to a false detection which covers both instances. To address these two challenges, in this paper, we propose a novel Progressive Scale Expansion Network (PSENet), which can precisely detect text instances with arbitrary shapes.

#### **Motivation:**

- > For the regression-based approaches, the text targets are in the forms of quadrangles and fail to deal with the text instance with arbitrary shapes (see Fig. 1 (a)).
- > For the segmentation-based approaches, they can locate the text instance based on pixel-level classification, but they are difficult to separate the text instances which lying closely (see Fig. 1 (b)).

### **Contribution:**

- > we propose an arbitrary-shaped text detection framework. The key points of the framework are "kernel" and "rebuilding text instance from kernel".
- $\triangleright$  we propose an algorithm to rebuild the text instance, namely, progressive scale expansion (PSE) algorithm, which can fast reconstruct the text instance from kernel.



(a)

Fig. 1 The results of different methods

(b)

# Shape Robust Text Detection with Progressive Scale Expansion Network Wenhai Wang, Enze Xie, Xiang Li, Wenbo Hou, Tong Lu\*, Gang Yu, Shuai Shao

#### Method (see Fig. 2):

- 1. We use ResNet-50 as the backbone of PSENet and concatenate low-level texture feature with high-level semantic feature (see Fig. 2 feature map F);
- 2. The feature map F is projected into n branches to produce multiple segmentation results  $S_1, S_2, \dots, S_n$ , Each  $S_i$  is one segmentation mask for all the text instances at a certain scale;
- 3. We use progressive scale expansion algorithm (see Fig.3) to gradually expand all the instances' kernels in  $S_1$ , to their complete shapes in  $S_n$ , and obtain the final detection results as R.



Fig. 2 The overall pipeline.



Fig. 3 The procedure of PSE. "CC" refers to the function of finding connected components. "EX" represents the scale expansion algorithm.

Progressive Scale Expansion

#### Label Generation (see Fig. 4):

calculated as:



#### **Results:**

| Method         | Ext          | CTW1500 |       |       |      | Method         | Ext          | Total-Text |       |       |     |
|----------------|--------------|---------|-------|-------|------|----------------|--------------|------------|-------|-------|-----|
|                |              | Р       | R     | F     | FPS  | Wiethod        | LAU          | Р          | R     | F     | FPS |
| CTPN [36]      | -            | 60.4*   | 53.8* | 56.9* | 7.14 | SegLink [32]   | -            | 30.3       | 23.8  | 26.7  | -   |
| SegLink [32]   | -            | 42.3*   | 40.0* | 40.8* | 10.7 | EAST [41]      | -            | 50.0       | 36.2  | 42.0  | -   |
| EAST [41]      | -            | 78.7*   | 49.1* | 60.4* | 21.2 | DeconvNet [2]  | -            | 33.0       | 40.0  | 36.0  | -   |
| CTD+TLOC [24]  | -            | 77.4    | 69.8  | 73.4  | 13.3 | TextSnake [26] | $\checkmark$ | 82.7       | 74.5  | 78.4  | -   |
| TextSnake [26] | $\checkmark$ | 67.9    | 85.3  | 75.6  | -    | PSENet-1s      | -            | 81.77      | 75.11 | 78.3  | 3.9 |
| PSENet-1s      | -            | 80.57   | 75.55 | 78.0  | 3.9  | PSENet-1s      | $\checkmark$ | 84.02      | 77.96 | 80.87 | 3.9 |
| PSENet-1s      | $\checkmark$ | 84.84   | 79.73 | 82.2  | 3.9  | PSENet-4s      | $\checkmark$ | 84.54      | 75.23 | 79.61 | 8.4 |
| PSENet-4s      | $\checkmark$ | 82.09   | 77.84 | 79.9  | 8.4  |                |              |            |       |       |     |

#### Table 1 The results on CTW1500 and Total-Text.

| Method                            | Res  | F     | Time         | FPS      |         |       |  |
|-----------------------------------|------|-------|--------------|----------|---------|-------|--|
| Meulou                            | Res  | г     | backbone(ms) | head(ms) | PSE(ms) | rro   |  |
| PSENet-1s (ResNet50)              | 1280 | 82.2  | 50           | 68       | 145     | 3.9   |  |
| PSENet-4s (ResNet50)              | 1280 | 79.9  | 50           | 60       | 10      | 8.4   |  |
| PSENet-4s (ResNet50)              | 960  | 78.33 | 33           | 35       | 9       | 13    |  |
| PSENet-4s (ResNet50)              | 640  | 75.6  | 18           | 20       | 8       | 21.65 |  |
| PSENet-4s <sup>†</sup> (ResNet18) | 960  | 74.30 | 10           | 17       | 10      | 26.75 |  |



 $\succ$  If we consider the scale ratio as  $r_i$ , the margin  $d_i$  between  $p_n$  and  $p_i$  can be

Fig. 4 The illustration of label generation.

Table 2 Time consumption of PSENet on CTW-1500.

## Code: https://github.com/whai362/PSENet